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DIAMETERS OF COMPLETE SETS OF CONJUGATE 
ALGEBRAIC INTEGERS OF SMALL DEGREE 

MICHEL GRANDCOLAS 

ABSTRACT. We give bounds for the coefficients of a polynomial as functions of 
the diameter of its roots, hence we obtain polynomials with minimal diameters 
and small degree 

1. INTRODUCTION 

Let P be a monic irreducible polynomial with coefficients in 2. The set of 
the roots of P in C is called a "complete set of conjugate algebraic integers". 
For example, each point of Z constitutes such a set. Later, we will ignore this 
trivial case and we will not distinguish between two complete sets of conjugate 
algebraic numbers if we can deduce one from the other by an integral translation 
(i.e. z -* z + h with h integer) or by a symmetry with respect to the origin (i.e. 
z )* -z). 

We know [1] that the diameter of such a set, which we also call the diameter 
of P, is at least vX- and that, for each real number c < 2, the number of sets 
whose diameter is at most c is finite [2]. These references solve problems studied by 
Favard [3] in 1920. Robinson [4] found real sets with diameters smaller than 4 and 
a cardinality smaller than 8, and has given a list for 7 and 8, without proving its 
c-ompleteness. Next, at the beginning of 1980, C. W. Lloyd-Smith [5] found these 
sets with diameters < 2 and a cardinality < 5. 

The aim of this paper is to generalize these results up to degree 10, by an efficient 
algorithm. The bounds for the coefficients will be easy to compute for all degrees 
from the barycenter of the roots and the center of a hexagon containing the roots. 
Furthermore they will be nearly optimal. 

Plan of the proof: In section 3 we deduce an upper bound for the value of IP(z) 
from a geometric argument given in [1]. In section 4, using Parseval's identity and 
Cauchy's formula we give upper bounds for the coefficients of P. In section 5 we 
give nearly optimal bounds in particular cases obtained with Newton's formulae. In 
section 6 we describe the algorithm we use. It is based on the Gauss-Lucas theorem 
and formulae of sections 4 and 5. In section 2 we give the list of all polynomials 
which are monic, irreducible of degree inferior to 10 and which have a diameter 
inferior to 2 (or which have the smallest diameters). 

I am indebted to M. Langevin for suggesting the study of this problem and to 
G. Rhin for interesting discussions. 
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2. RESULTS 

2.1. Main Results. The polynomials Pd(z) represent monic irreducible polyno- 
mials with coeficients in 2, of degree d and the coefficient of zd-l is an integer 
between F-dl (where Fxl denotes the smallest integer greater than or equal to x) 
and 0, the polynomials Pd(z) of minimal diameters are the following: 

d = 2 : z2 z + 1,diam = V/3,disc = -3 

d = 3 : z3 z2 + 1, diam = 1.79423415..., disc = -23 

d = 4: z4 - 2Z3 + 2z2 _ z + 1, diam = 1.89882892..., disc = 117 

d = 5 : Z5 - 2Z4 + z3?+ z2 _ z - 1, diam = 1.99179625... disc = 3089 

d = 6:z6 _Z5 + Z4 _ Z3 + Z2 _ z + 1, diam = 1.94985582..., disc = -16807 

d = 7: z7 - 2Z6 + 2z5 - 2Z4 + z3 + 1, diam = 1.97030662... disc = -438599 

d = 8: z8 _z7 + z5 _ z4 + z3 - z + 1, diam = 1.98904379..., disc = 1265625 

d = 9: Z9 - 3Z8 + 4Z - 3Z6 + Z + 1, diam = 2.00758717..., disc = 327060313 

d = 10 z10 - z9 + Z8 _ z7 + Z6 _ Z5 + Z 4 _ z3 + z2 _ z 1, diam = 1.97964288... 

disc = -2357947691 

where diam denotes the diameter of the set of roots of the polynomial Pd and disc 
its discriminant. 

Remarks. 1) d = 9 is the only case with diam > 2. We can conjecture that the 
only polynomials of diameter less than 2 are cyclotomic for d > 9. The polynomials 
of minimal diameter are precisely those which have the smaller discriminants for 
d = 2,3,4. This method can give small discriminants. 

2) for d = 10 the search is not exhaustive. 

2.2. Other Results. We give the list of polynomials of diameter < 2 from degree 
2 to degree 10, if the barycenter is in the interval [0,1/2]: 

degree 2: 
2 

z z+?1,diam=V3 

degree 3: 
Z3 _z2 + 1, diam = 1.794234155701 
Z3 -z2 - 1, diam = 1.874181059385 
degree 4: 
Z4- 2Z3 + 2Z2 - Z 1, diam = 1.898828922115 
Z4 _z3 + z2 _ Z + 1, diam = 1.902113032590 
Z4- z3 + 1, diam = 1.993919104324 
Z4- z + 1, diam = 1.993919104324 
degree 5: 

5- 2Z4 + Z3 + z2 - Z - 1, diam = 1.991796253434 
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Z5 - z4 + 1, diam = 1.997854099950 
degree 6: 
Z6 _ z3 + 1, diam = 1.969615506024 
Z6 _ Z5 + Z4 - Z3 + Z2 - Z + 1, diam = 1.949855824363 
Z6 - 3Z5 + 4Z4 - 2Z3 + 1, diam = 1.997926386121 
degree 7: 
Z7 - 2Z6 + 2Z5 - 2Z4 + Z3 + 1, diam = 1.970306627313 
z7 - 2Z6 + 2Z5 - Z4- 1, diam = 1.998308105887 
degree 8: 
Z8 - 4Z7 + 7Z6 - 6Z5 + 2Z4 + Z3 _ Z2 + 1, diam = 1.989263045606 
Z8 - z7 + Z5 - Z4 + Z3 - Z + 1, diam = 1.989043790736 
degree 9: 
none 
degree 10: 
z10 - Z + Z8 ? z7 + z6 - z5 + Z4 _ Z3 + Z2 ? Z + I1, diam = 1.979642883761 

3. THE GEOMETRICAL LEMMAS 

3.1. Lemma 1. Let X be a subset of diameter 6 symmetric with respect to the real 
axis. There exists a regular hexagon which contains X and such that the opposite 
sides are parallel and the distance between these sides is 8. 

Proof. According to the argument used in [1], each hexagon formed by the inter- 
section of 3 strips of width 8 satisfies the conditions of the lemma, the first strip 
being parallel and symmetric with respect to the real axis, the second of the same 
width making an angle of 7 with the real axis, the third being the reflection of the 3 

second in the real axis. In particular, X is contained in a disc of radius - D 

3.2. Corollary. If the diameter of the roots of P is 6 and their barycenter is 0, 
then the real parts of these roots lie in the segment [-a + h, a + h] with a = ; 

and 0 < h < 

Proof. By a translation, we can put the barycenter of the roots at the origin. 
Thanks to a symmetry with respect to the origin, it is always possible to have the 
center h of the regular hexagon of Lemma 1 in the segment [0, I 1]. ID 

3.3. Lemma 2. Let Mi (1 < i < d) be d points of the complex plane and G their 
barycenter. Then, for any point M, 

(3.1) (E=1 iM < MG 2 + 62 

d -3 

Proof. From the equation 

d d d d 

E MM2 = d x MG 2+ E GM2 and E JM2 -d x JG2 + E GM,2 
i=l = = = 

(where J is the center of the regular hexagon described in Lemma 1), we deduce 
the result by noticing that JMi K 3 F 
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3.4. Corollary. Let P be a polynomial with real coefficients, of degree d, where the 
coefficient of Zd (resp. zd-l) is ad (resp.-addg, where g is the barycenter of the 
roots of P). Then, for all complex numbers z, 

(3.2) |P(z)j < 2ad 3 

Proof. Apply the inequality of the arithmetic and geometric means to (3.1). 0 

3.5. Lemma 3. Let ce > O, h be two reals and d an integer greater than or equal 
to 2. For X1, X2, . . , Xd, d real, such that 

d 

-a + h < xi < a + h, xi = 0, 
i=l 

we define 

51(h) = ==-,x>0 =-E=I,X<oxi = 2 zi=1 |Xi 

( h) Xi, 53(h) = Z_1 X 4(h) = Ed 4 
We have: 
1) If either a, (h), o'2(h) or 54(h) take a maximal value, then we can suppose 

that, with at most one exception, the values of xi are all equal to -a + h or ae + h. 
2) If 5 3(h) is positive and maximal, then we can have exactly two possibilities: 

(i) with at most one exception, the values of xi are all equal to -ca + h or ce + h-, 
or else (ii) several of the xi are negative and equal and the remaining xi are equal 
to a+?h. 

3) If c53(h) is negative and has a maximal absolute value, then we can have 
exactly two possibilities: (i) with at most one exception, the values of xi are all 
equal to -a + h or a + h, or else (ii) several of the xi- are positive and equal and 
the remaining xi are equal to -e + h. 

Remark. this lemma allows us to transform the search for maximal bounds of all 
the sets of conjugate algebraic integers to a finite number of them. In section 5, we 
apply this lemma to ae and h found in Lemma 1 of section 3.1 and corollary of section 
3.2. The barycenter of the roots xi- is at the origin and clearly in [-ce + h, ce + h]. 

Proof. 1) case of a, (h): 
(a) Suppose that we have two indices i / j such that -a + h < xi < 0 < xj < 

at + h and a,(h) has a local maximum. Then we have a real t > 0 such that: 
-a + h < xi-t < 0 < xj + t < a + h and: Ix- + tj + Ixi- t > Ix - + Ix-I which 

gives a contradiction. 
(b) Suppose that we have two indices i / j such that 0 < xi- < xj < a+ ? h 

and a,(h) has a local maximum. Then we can choose a real t > 0 such that: 
xj + t = a + h; 

if xi - t > 0, then lxj + tj + {xi - t = lxjI + IxiI hence we can suppose one of 
the roots is equal to ae + h. 

if xi-t <0, then Ixj + t + {xi - t > xjI + I x-I which gives a contradiction. 
(c) Suppose that we have two indices i / j such that -a + h < xi < xj < 0 

and a,(h) has a local maximum. Then we can choose a real t > 0 such that: 
xi- t = -a + h; 

if xj + t < 0, then Ixj + tI + Ixi -t = Ixjl + Ix-I hence we can suppose one of 
the roots is equal to -a + h. 

if xj + t > 0, then lxj + tl + Ixi - t > Ix - + IxiI which gives a contradiction. 
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1) case of 52(h): 
Suppose that we have two indices i / j such that -a + h < xi < xj < a + h and 

52(h) has a local maximum. Then we have a real t > 0 such that: 
-a + h < xi-t < xj + t < ce + h and: (xi_t)2?(x +t)2_xi-x2 = 

2(xj - x,)t + t2 > 0 which gives a contradiction. 

1) case of u4 (h): 
Suppose that we have two indices i / j such that -a + h < xi < xj < a + h and 

54(h) has a local maximum. Then we have a real t > 0 such that: 

(xi-t)4 + (xj + t)4 -Xi 4-X4 = 4(xX3 ->X3)t + 60(X2 + X?)t2 - xj )t3 
which gives a contradiction. 

2) Suppose that we have two indices i / j such that -a+?h < xi < xj < a+h and 
u3 (h) has a local maximum in (xI, x2, .X.. ,X). Since (xi ?t)3 ? (x -t)3-4i-x3 = 
3(xi + xj)t(t + xi -x) we have three cases: 

(1) first case: xj/- xi,xj :-xi. 
a) xi + xj > 0: we replace xi by xi + t and xj by xj - t with t < 0 and we have 

a contradiction. 
b) xi + xi < 0: we replace xi by xi + t and xj by x -t with t > 0 and we have 

a contradiction. 
(2) second case: Xj = -xi. 
We can put one of the roots in -a+ h or in a+ ? h without changing the maximum 

of 53(h). 
(3) third case: xj = xi, xi & -xi. 
a) xi + xj> 0: (Xi ? t)3 ? (xj-t)3-x -x > 0 and we have a contradiction. 
b) xi + xj < 0: we cannot have a value Xk < xi thanks to the first case. We can 

suppose there is no root xi < Xk < a + h thanks to the first or second case. Hence 
the other roots are equal to ae + h or xi. Only in this case we obtain the possibility 
(ii). 

3) The proof is similar to 2). D 

4. INEQUALITIES USED IN THE ALGORITHM 

Let P(z) = Ed aiz2 be a polynomial with real coefficients. By computing the 
mean value of IP(z) 2 on a circle of radius r > 0 centered at the origin, we deduce 
from (3.2) and Parseval's identity that 

d 16 
(4.1) S lai 2r2i < lad 12 (- ? r2 - 2gr cos (2irt) + g2)d dt 

i=O3 

with g= -adi 

We deduce also from (3.2) and from Cauchy's integral formula an upper bound 
for the values of the coefficients of P: 

(4.2) |ail < ladl jo (f3 + r - 2gr cos(27rt) ?g2) dt 
(4.2) lail < ladl i0 < i <d- 1. 

This yields for g = 0: 

(4 3) lail < ladl rz ) 0 < i < d- 1. 

We will look for numerical values of r minimizing these bounds. 
We still assume that the polynomial P is monic, that is to say: P(z) = zd + 

blzdl1 + * *- + bkZd-k + * *- + bd . We will suppose also that it is of diameter < 2 
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for the computation of minimal diameters and that the barycenter of its roots is in 
the interval [0,1/2] (this assumption is not restrictive because we can replace P(z) 
by P(?z + h), h E 2). This limits the possible values of bl. 

We reduce the computations significantly by applying the above bounds succes- 
sively to the derivatives of P. This is possible because the sets of corresponding 
roots of these derivations lie in the same hexagon as we have seen earlier, by the 
theorem of Gauss-Lucas. These sets also have the same barycenter g. Hence we 
replace the bounds of a quadratic form in n variables by a sequence of triangular 
quadratic forms. The preceding remark shows that we can consider a sequence of 
quadratic forms with the variables (b1, . .. , bk) for 1 < k < d. 

It can also be useful, when the degree increases, to compute with rational co- 
efficients and put the barycenter of the roots at the origin. Indeed, if we consider 
P(Z) = zd + b1zd-1 + + bkzd-k + * + bd, the coefficients of the polynomial 
Q(x) = xd + Blxd 1 + + BkXd-k + + Bd, obtained from P by a translation 
of the barycenter of the roots to the origin, satisfies the system of formulae: 

B, = 0 

1 d2= (f 2) d)2b1 2 d 

Bk( 
d )-bl k + bi (d -i (_ bl )k-1 +..- + bj (d -k) (_ bi )kj+ ...+ bk 

Bd( (-b1)d?b(-b1)d1? ?bk( 
d d j ~d)k ? b 

The interest of replacing coefficient b- with Bi is that the number of possible 
values for Bi is smaller because the bounds previously obtained are increasing 
functions of the barycenter. 

5. BOUNDS WITH NEWTON'S FORMULAE 

We suppose in this section that the barycenter of the roots zi of P is at the 
origin, furthermore h: the center of the hexagon containing the roots is positive 
by Lemma 1 of section 3. We can find nearly optimal bounds for B2,1B3,1B4 by 
using Newton's formulae and Lemma 3 of section 3. Indeed we apply the results of 
Lemma 3 to the real parts of the roots zi which lie in the segment [-a + h, at + h] 
by Corollary 3.2. 

5.1. Lemma. For a polynomial P, we introduce the following expressions, where 
Zj = xj + iyj, 1 < j < d, are its roots: 

d 

a, (h) E Xj, 
j=l,xj >0 

d d d 

2 (h)= ZX,u3(h) = ZXj, 4(h) = ZXj. 

j=1 j=1 i=1 
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The bounds of a,(h), u2(h), 1u3(h)1, u4(h) are found thanks to Lemma 3 and 
given by: 

1) For a, (h), o2(h), 64(h) we are in the first case of Lemma 3, h,k satisfy the 
following conditions: 

0 < [-2ak+a(d-2)] <h ?ce - 2ck 
- d - - d' 

k is the number of xi = a+?h, k E [0, (dA1)1 if d is odd, k E [0, d - 1] if d is even. 
The condition on h is found thanks to the root which is not equal to -a + h or 

a + h. 

(5.1) ? < al(h) < k(a + h) + 1(-d + 1)h -2ak + a(d - Q) 

(5.2) 0 <u 2(h) < k(a + h)2 + (d-1-k)(-a + h)2 

+ [(-d + 1)h - 2ak + a(d - 1)]2, 

0 <u 4(h) < k(a + h)4 + (d-1-k)(-a + h)4 

+ [(-d + 1)h - 2ck + c(d -1)]4. 

2) For 1'3(h) , we have three bounds Bk (h), Bkl (h), Bk" (h) which correspond 
respectively to the three cases of Lemma 3: 

(5.4) 0 < 153(h) I < max {Bk (h), Bk' (h), Bk" (h)} 

with: 
a) Bk(h) = lk(e + h)3 + (d-1-k)(-a + h)3 + [(-d + 1)h-2ck + c(d-1)]31Y 
h,k satisfy the following conditions: 
0 < [-2ak+a(d-2)] < h < C _ 2ak 

k is the number of xi = a+?h, k E [0, d 1] if d is odd, k E [0, d - 1] if d is even. 
b) Bk' (h) = k'(ae + h)3 + [-k'(a + h)]3/ (d -k)2}1. 
h,k' satisfy the following conditions: 
0 < h < a(1 _ 2' ), k' is the number of xi = a + h, d - k' is the number of 

negative roots which are equal, k' E [0, d-1] if d is odd, k' E [0, d - 1] if d is even. 
C) Bk" (h) = k"(-a + h)3 + [k"(a - h)]3/(d - kl)21. 
h, k" satisfy the following conditions: 
max(O,ca(2k -1)) < h < ay k" is the number of xi =-a + h, d- k" is the 

number of positive roots which are equal, k" C [1, d - 1]. 

Remarks. 1) It would be possible to find bounds using the sign of U3(h), but it is 
not useful. 

2) We can observe that: 
maXh maXk,k ,k {Bk (h), Bk, (h), BkI I(h)} = maXh maXk Bk (h). 

5.2. Corollary 1. For each function vi (h), one uses calculus to maximize the right 
member of each inequality as a function of h for fixed k and then maximizes over 
the various possibilities for k. We call c1, I'2, I'3, (74 these bounds. The maximum 
Of vi (h), (2 < i < 4), is obtained with an algorithm thanks to the derivatives below 
and the intervals obtained in section 5.1. 

Derivatives: 
We give here the derivatives to find c2, c3, (74 obtained with the PARI system. 
1) derivative of f, 

f (h) = k(a + h)2 + (d - 1 - k)(-a + h)2 + [(-d + 1)h - 2cek + c(d - 1)]2: 
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f'(h) = (2d2 - 2d)h - 2adc2 + 2da + 4dak. 

2) derivative of g, 

g(h) = k(a ? h)3 + (d - k - 1)(-a + h)3 + [(-d + 1)h - 2ak + (d -1)]3 

g'(h) = (-3d3 + 9d2 - 6d)h2 + [(-12d2 + 24d)ak + (6d3 - 18d2 + 12d)a]h 

+ (-12d + 12)ca2k2 + (12d2 - 24d + 12)ca2k + (-3d3 + 9d2 - 6d)a2. 

3) derivative of 1, 1(h) = k(a + h)3 + [-?(a+h)]3 

11(h [ (-6dk2 +3d2k) h2 (12dak2 +6d22ak) h (-6dae2k2 +3d2ax2k) 

) -(k2-2dk+d2) (k2-2dk+d2) ] (k2-2dk+d2) 

4) derivative of m, 

m(h) = k(a + h)4 + (d - k - 1)(-a + h)4 + [(-d + 1)h - 2ak + a(d -1)]4 

m'(h) = [4d4- 16d3 + 24d2 - 12d]h3 

? [(24d3 -72d2 + 72d)ak + (-12d4 + 48d3 - 72d2 + 36d)ce]h2 

? [(48d2 -96d + 48) C2k2 + (-48d3 + 144d2 -144d + 48)ca2k 

? (12d4 - 48d3 + 72d2 - 36d)ca2]h 

? [(32d - 32) C3k3 + (-48d2 + 96d - 48)oe3k2 

? (24d3 - 72d2 + 72d - 16)ca3k + (-4d4 + 16d3 - 24d2 + 12d)a3]. 

5.3. Corollary 2. Bounds of B2, B3, B4 as functions of u1, C2, C3, c4: 

(5.5.a) -C2 < B2< Ld 6)2 2 - B 2 2 

3 82 (5.6.a) IB31 < ?3 u1(-)2, 

2 

(5.7.a) (-C4 - d(-)2)/4 < B4 < Cr2(-_)2 + ?2 
2 2 8 

Remark. B1 = 0. 

Proof. For (5.5.a) we use S2 = Ed 1z2, for (5.6.a) S3 = Ed z3, for (5.7.a) 

d z4 ~ ~ ~ ~ ~ ~ ~ ~~ S4 Ei= , 1 Zi4i 
Since we have: S2 = EdI= Xi2 _Ed yi2j S3 = d 

I Xi3- 3 Ed1 xiy 2,S= 

Zd=- xi4-6f1 EdX2 ?2 +Ed I y4, hence we obtain bounds for S2,S3,S4, and thanks 

to Newton's formulae, B2 = S2B3 = 5j3 B4 = S2 _ S4 2 3 ~~~8 4 
We get the bounds from the following inequalities: 

-2L (6)2 <S2 ? Cr2, 
2 2 

IS31 < U3+ 3?1(-) 
2 

6)2 64 
-4C22(9- < S4 ?< C4 + d(? ) 

which are obtained by simple considerations on the sign of values x2. 
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5.4. Corollary 3. If P is totally real, we have: 

(5.5.b) 22 B2_<0 

(5.6.b) IB31 < 3 
- 3 

(5.7.b) <4 B4 < 
4 

Remark. If P is totally positive (i.e. all its roots are real and positive), we have: 

(5.6.c) 0 < B3 < ?3 
-3 

instead of (5.6.a) because B3 cannot be negative. 

5.5. Remark. We can find formulae for bounds of Bk, (h), Bk" (h); this is a way to 
verify the bounds of c3 found thanks to an algorithm with the formulae of (5.3). 

1) For Bk'(h): 

We can simplify Bk' (h), so that: 

Bkh) 
k h 

d(d-k')2 I and we get maXk'EK k'(d - k')(d - 2k') for k' 
d _ /-3d. ~ a B h 8i3k'(d -k')(d --2k') K<-63 2 - 46'; hence: maXhCI maXk'CK Bk' (h) = maXk-K 4 27d 

2) For Bkll(h): 
We can simplify Bk" (h), so that: 

Bk,, (h) = k"( (Y(+h)3 d(2d-2" 
(d-k"/)2 

We have two cases: 
1) first case: k" e K = [d/2, d - 1], h e J =[( 1), 

maxhc \ 1k" () 8c3 (d-kk") k" (2k" -d) 
maXhC,J MaXk/, CK Bkl (h) = maxk//E 

- d2 

We get maxk,vK(d - k")k"(2k" - d) for k" = d+ ? 
hence: maxhCJ maxklCEK BkI (h) < 4 d63. 
2) second case: k" C K' = [1, d/2], h E J' = [O, Iac, 
maxhCJI maXkeK' Bk"l(h) = maxk"e' c k"d(d-2k")2 

We get maXk/EFK? (d-k")2 for k" - 

hence: maXhCJ maXk"CK' Bk (h) < 12v63 

Thanks to case 1 and 2: maxhcI maxkIc[1,d1j] Bk" (h) < -4-d 

6. PLAN OF THE ALGORITHM 

Let Pk = (nT-k)!p(k). Pk is a monic polynomial in Q[Z] which has a set of roots 
with diameters smaller than 8 by the theorem of Gauss-Lucas. Now Pk depends 
only on b., . . , bk, which allows us to use a recursive algorithm. This method has 
already been used by Robinson for the search of polynomials with all real roots 
and a small diameter. We will test from k = 2 to k = n the polynomials Pk which 
have their diameter less than 8. Hence we have a tree search which allows us to 
considerably limit the number of polynomials to study, compared to an iterative 
search on the set of values permitted by the bounds obtained in section 4. Of 
course, we must also use Parseval's formula. We need not compute the whole set of 
roots; we can stop the computation of roots of the polynomial Pk if the imaginary 
part of a root is greater than 2 or if we find two roots xi and xj of Pk such that 2 ' 

ixi -Xjl ?8. 
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At the beginning, we compute the bounds of Bk, that is to say: -BSUPk and 
Bsupk and also hr,k bounding r2k ? .j=1 D.r2(ki) (for a few judicious values of 
r) thanks to the formula given in section 4. Here Di is the coefficient of xk-i of Pk 
translated to the iorigin. We compute also the values binf, = F]1 and bsup, = 0 
bounding b1. 

We construct a procedure testk which computes the diameter of the roots of Pk, 
checks whether it is smaller than 6 and which also verifies the Parseval constraint. 

step 1: we iterate the possible values of b1 
step 2: we iterate the possible values of b2, modulo the change of variables of 

section 4. If test2 is satisfied, we go to step 3, else we go to the next value of b2 or 
we come back to step 1 at the end of the iteration. 

step k: we iterate the possible values of bk, modulo the change of variables of 
section 4. If testk is satisfied and k < n we go to step k + 1, if testk is satisfied and 
k = n we give the result, else we go to the next value of bk or we come back to step 
k - 1 at the end of the iteration. 

7. TABLE OF THE BOUNDS FOR COEFFICIENTS 

1) The bounds of B2, B3, B4 are obtained with the formulae of section 5. 
2) The bounds of B5, B6, B7, B8, Bg are obtained with formula (4.3) since the 

barycenter is supposed to be at the origin. The derivative of r > (r +6/3)/ 1< 

i < d - 1, is easy to compute. The minimum of r (r2+62/3)d/2 is obtained for 

r=4x = For i = O it is obtained with r = 0. (3 d -i) 
3) Using the formulae of section 5 instead of section 4, we considerably shorten 

the time of computation (it divides by 2 or 3). 
Bounds for B2, B3, B4, B5 as a function of the degree if the diameter is 2: 

degree\coef B2 B3 B4 B5 
3 -1.78 1 -2.46 2.46 none none 
4 -2.67 2 -3.85 3.85 -3.34 8.91 none 
5 -3.2 2 -4.76 4.76 -4.21 11.52 -2.06 2.06 
6 -4 3 -5.76 5.76 -4.96 16 -7.94 7.94 
7 -4.58 3 -6.48 6.48 -5.69 19.62 -16.67 16.67 
8 -5.34 4 -7.70 7.70 -6.67 24.91 -28.95 28.95 
9 -5.93 4 -8.69 8.69 -7.58 29.45 -45.28 45.28 

Bounds for B6, B7, B8, Bg as a function of the degree if the diameter is 2: 

degree\coef B6 B7 B8 B9 
6 -2.38 2.38 none none none 
7 -15.9 15.9 -2.74 2.74 none none 
8 -22.48 22.48 -12.36 12.36 -3.17 3.17 none 
9 -41.61 41.61 -29.72 29.72 -15.20 15.20 -3.65 3.65 
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